Feature Agglomeration Networks for Single Stage Face Detection

نویسندگان

  • Jialiang Zhang
  • Xiongwei Wu
  • Jianke Zhu
  • Steven C. H. Hoi
چکیده

Recent years have witnessed promising results of face detection using deep learning, especially for the family of region-based convolutional neural networks (R-CNN) methods and their variants. Despite making remarkable progresses, face detection in the wild remains an open research challenge especially when detecting faces at vastly different scales and characteristics. In this paper, we propose a novel framework of “Feature Agglomeration Networks” (FAN) to build a new single stage face detector, which not only achieves state-of-the-art performance but also runs efficiently. As inspired by the recent success of Feature Pyramid Networks (FPN) [15] for generic object detection, the core idea of our framework is to exploit inherent multi-scale features of a single convolutional neural network to detect faces of varied scales and characteristics by aggregating higher-level semantic feature maps of different scales as contextual cues to augment lower-level feature maps via a hierarchical agglomeration manner at marginal extra computation cost. Unlike the existing FPN approach, we construct our FAN architecture using a new Agglomerative Connection module and further propose a Hierarchical Loss to effectively train the FAN model. We evaluate the proposed FAN detector on several public face detection benchmarks and achieved new state-of-the-art results with real-time detection speed on GPU.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determining Effective Features for Face Detection Using a Hybrid Feature Approach

Detecting faces in cluttered backgrounds and real world has remained as an unsolved problem yet. In this paper, by using composition of some kind of independent features and one of the most common appearance based approaches, and multilayered perceptron (MLP) neural networks, not only some questions have been answered, but also the designed system achieved better performance rather than the pre...

متن کامل

Analysis of a Hybrid Face Detection System Using Feature Ex- Traction and Neural Network Methods

Face detection is the problem of determining whether a sub-window of an image contains a face or not. The rapidly expanding research in face processing is based on the premise that information about a user’s identity, state, and intent can be extracted from images, and that computers can then react accordingly. This hybrid face detection system is combination of two methods i.e. Feature Extract...

متن کامل

A Hybrid Approach to Human Face Detection

Face detection is the problem of determining whether a subwindow of an image contains a face or not.The rapidly expanding research in face processing is based on the premise that information about a user’s identity, state, and intent can be extracted from images, and that computers can then react accordingly. This hybrid face detection system is combination of two methods i.e. Feature Extractio...

متن کامل

Robust Real-Time Face Detection Using Hybrid Neural Networks

In this paper, a multi-stage face detection method using hybrid neural networks is presented. The method consists of three stages: preprocessing, feature extraction and pattern classification. We introduce an adaptive filtering technique which is based on a skin-color analysis using fuzzy minmax(FMM) neural networks. A modified convolutional neural network(CNN) is used to extract translation in...

متن کامل

Multi-View Face Detection in Open Environments using Gabor Features and Neural Networks

Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1712.00721  شماره 

صفحات  -

تاریخ انتشار 2017